Forschen für Tierwohl und Umwelt
Konzepte der Nutztierhaltung sollen die drei Säulen der Nachhaltigkeit - Umwelt, Soziales und Ökonomie - integrieren. Während in der Gesellschaft der Wunsch nach mehr Tierwohl und mehr Umweltschutz wächst, müssen gleichzeitig die ökonomischen Überlebensnotwendigkeiten der Landwirte berücksichtigt werden. Dazu müssen innovative Verfahren Eingang in die Praxis finden.
Wir richten deshalb unsere anwendungsorientierte Grundlagenforschung in der Tierhaltung im Sinne des One Health-Ansatzes auf die Verbesserung von Tierwohl, Haltungsumwelt, Tier- und Umweltschutz sowie auf die Wettbewerbsfähigkeit der Landwirtschaft aus. Unsere Ziele sind: objektive Tierwohlstandards, flexible und regional angepasste Konzepte zur Lösung von Umweltkonflikten, transparente Tierhaltung, Akzeptanz beim Verbraucher und regionale Wertschöpfung.
Unsere Forschung in diesem Programmbereich befasst sich insbesondere mit digitalen Verfahren des Monitorings von Tierwohl, Stallklima und Emissionen sowie mit der Bewertung von Tierhaltungssystemen, insbesondere in frei belüfteten und neuen Haltungssystemen. Wir erarbeiten Grundlagen zur Entstehung und Ausbreitung von gasförmigen Emissionen und erregerbelasteten Partikeln sowie zur Risikominimierung der Ausbreitung von multiresistenten Erregern.
Der ATB-Grenzschicht-Windkanal bietet umfängliche Möglichkeiten zur Untersuchung von Umströmungs- und Ausbreitungsvorgängen an landwirtschaftlichen Gebäuden sowie von Durchströmungs- und Lüftungsvorgängen innerhalb der Gebäude. Das detaillierte Verständnis auf Prozessebene fließt ein in Modellierungsansätze mit dem Ziel, Emissionen neuer Haltungssysteme abzuschätzen und Möglichkeiten für geringe Emissionen in tierfreundlichen Stallungen zu finden.
Wir verstehen Tierhaltung als Bestandteil kreislauforientierter Agrarsysteme und integrieren unsere Forschung in das holistische, bioökonomische Konzept des Leibniz-Innovationshofs, der aktuell am Standort Groß Kreutz etabliert wird.
Digitales Monitoring des Tierwohls
Wir entwickeln und erproben den Einsatz nicht-invasiver Sensoren zur tierindividuellen Erfassung von Stress und Gesundheit. In diesem Kontext analysieren wir bei verschiedenen Tierarten und Haltungssystemen tierindividuelle Indikatoren wie Aktivität, Atmungsrate, Körpertemperatur und Leistung zusammen mit stallklimatischen Parametern, zunehmend mit Hilfe von Data Science, künstlicher Intelligenz und Sensorfusion. Ziel ist die Entwicklung von automatischen Entscheidungsunterstützungs- und Steuerungseinheiten auf der Basis von tierbezogenen Indikatoren. Frühwarnsysteme sollen Landwirte dabei unterstützen, Tiergesundheit und Tierwohl nachhaltig zu verbessern.
Stallklima und Emissionen

Wir forschen an der Entwicklung von Algorithmen zur effizienten Messung, Charakterisierung und Modellierung der Dynamik von umwelt- und klimaschädlichen und/oder gesundheitsrelevanten Schadstoffen sowie zur Eindämmung von Infektionen und antimikrobiellen Resistenzen (AMR). Im Rahmen unseres Drei-Säulen-Modells verbinden wir Messungen in verschiedenen realen Haltungssystemen mit physikalischer und mathematischer Modellierung zu einem Gesamtsystem. Die hier erarbeiteten Lösungen sollen die Resilienz landwirtschaftlicher Betriebe stärken und zur Energieeffizienz, der Abkehr von fossilen Rohstoffen und zur Emissionsminderung beitragen.
Eindämmen von Infektionen und Antibiotikaresistenzen

Unsere Arbeiten folgen dem One Health-Ansatz und zielen auf Präventions- und Kontrollmaßnahmen gegen die Ausbreitung von Zoonosen, Infektionskrankheiten und Antibiotikaresistenzen im Tierhaltungssektor. Wir untersuchen beispielsweise den Einfluss von Futtermittelzusätzen und verbesserten Hygienemaßnahmen in der Schweinehaltung, die Wirksamkeit verschiedener Wirtschaftsdüngerbehandlungen und Parametervariationen auf die Reduzierung von AMR-Bakterien in der Geflügelhaltung und entwickeln ein Frühwarnmodell für Mastitis in der Milchviehhaltung.
Bewertung von Tierhaltungssystemen
Unser Ziel ist es, für eine nachhaltige Tierproduktion Stoffkreisläufe zu schließen, die Stickstoffeffizienz zu verbessern, THG-Emissionen zu reduzieren sowie individuelle, regionale und flexible Konzepte für zirkuläre Agrar- und Ernährungssysteme zu entwickeln. Hierfür nutzen wir Methoden der Modellierung, Systemanalyse und multikriteriellen Bewertung einschließlich der Quantifizierung von Trade-offs und Synergien. Die Ergebnisse fließen sowohl ein in betriebliche Entscheidungshilfesysteme und Vorschläge zur Bestandsverbesserung als auch in Emissionsmodelle für die Analyse länderspezifischer Szenarien und Inventare. Ebenfalls arbeiten wir in diesem Bereich eng mit internationalen Gremien bei IPCC, UNECE und FAO zusammen.
Zu allen Mitarbeiter*innen des Programmbereichs
Aktuelles
Veranstaltungen
Forschungsprojekte
-
Das Verbundprojekt Innovationsnetzwerk Rind InnoRind (hier: Förderphase 2) vereint deutschlandweit die Fachexpertise von zwölf Projektpartnern, darunter Universitäten, Hochschulen, Forschungsinstitute, Landwirtschaftskam…
-
Natürlich belüftete Schweineställe mit Auslauf im Freien (NVPBOYs) finden weltweit immer mehr Beachtung. Der Luftaustausch zwischen dem Außen- und dem Innenbereich eines NVPBOY ist nur unzureichend bekannt, wodurch eine …
-
Die Häufigkeit des Auftretens von antimikrobiellen Resistenzen (AMR) bei Nutztieren ist ein wichtiger Aspekt für deren Verbreitung in der Umwelt und für die Exposition gegenüber Menschen und anderen Tieren. In dem ERA-NE…
-
Im Rahmen von HorseWatch soll evaluiert werden, welchen Einfluss die Pferderasse und die Trainingsbedingungen, das Alter zu Beginn der Nutzung und das Haltungssystem auf Gesundheit, Verhalten und Wohlbefinden von sehr fr…
-
Das Projekt DairyMix zielt darauf ab, den Wandel landwirtschaftlicher Strukturen hin zu einem höheren Maß an Diversität zu unterstützen, indem mehr Kulturen nacheinander oder parallel angebaut werden. Dies verbessert die…
Alle Projekte aus dem Programmbereich
Publikationen aus dem Programmbereich
- Marzban, N.; Libra, J.; Rotter, V.; Ro, K.; Moloeznik Paniagua, D.; Filonenko, S. (2023): Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage. ACS Omega. (4): p. 4234-4243. Online: https://doi.org/10.1021/acsomega.2c07419 1.0
- Bettoni, M.; Maerker, M.; Sacchi, R.; Bosino, A.; Conedera, M.; Simoncelli, L.; Vogel, S. (2023): What makes soil landscape robust? Landscape sensitivity towards land use changes in a Swiss southern Alpine valley. Science of the Total Environment. (2): p. 159779. Online: https://doi.org/10.1016/j.scitotenv.2022.159779 1.0
- Tkachenko, V.; Marzban, N.; Vogl, S.; Filonenko, S.; Antonietti, M. (2023): Chemical Insight into the Base-Tuned Hydrothermal Treatment of Side Stream Biomasses. Sustainable Energy & Fuels. : p. 769-777. Online: https://doi.org/10.1039/D2SE01513G 1.0
- Karimi, H.; Navid, H.; Dammer, K. (2023): A Pixel-wise Segmentation Model to Identify Bur Chervil (Anthriscus caucalis M. Bieb.) Within Images from a Cereal Cropping Field. Gesunde Pflanzen. (1): p. 25-36. Online: https://doi.org/10.1007/s10343-022-00764-6 1.0
- Alipasandi, A.; Mahmoudi, A.; Sturm, B.; Behfar, H.; Zohrabi, S. (2023): Application of meta-heuristic feature selection method in low-cost portable device for watermelon classification using signal processing techniques. Computers and Electronics in Agriculture. (107578): p. 1-16. Online: https://doi.org/10.1016/j.compag.2022.107578 1.0
- Küchler, J.; ; Reiß, E.; Nuß, L.; Conrady, M.; Ramm, P.; Schimpf, U.; Reichl, U.; Szewzyk, U.; Benndorf, D. (2023): Degradation Kinetics of Lignocellulolytic Enzymes in a Biogas Reactor Using Quantitative Mass Spectrometry. Fermentation. (1): p. 67. Online: https://doi.org/10.3390/fermentation9010067 1.0
- Klongklaew, A.; Unban, K.; Kalaimurugan, D.; Kanpiengjai, A.; Azaizeh, H.; Schroedter, L.; Schneider, R.; Venus, J.; Khanongnuch, C. (2023): Bioconversion of Dilute Acid Pretreated Corn Stover to L-Lactic Acid Using Co-Culture of Furfural Tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation. (2): p. 112. Online: https://doi.org/10.3390/fermentation9020112 1.0
- Specka, X.; Martini, D.; Weiland, C.; Arend, D.; Asseng, S.; Boehm, F.; Feike, T.; Fluck, J.; Gackstetter, D.; Gonzales-Mellado, A.; Hartmann, T.; Haunert, J.; Hoedt, F.; Hoffmann, C.; König, P.; Lange, M.; Lesch, S.; Lindstädt, B.; Lischeid, G.; Möller, M.; Rascher, U.; Reif, J.; Schmalzl, M.; Senft, M.; Stahl, U.; Svoboda, N.; Usadel, B.; Webber, H.; Ewert, F. (2023): FAIRagro: ein Konsortium in der nationalen Forschungsdateninfrastruktur (NFDI) für Forschungsdaten in der Agrosystemforschung. Informatik Spektrum. (Januar): p. 1-12. Online: https://doi.org/10.1007/s00287-022-01520-w 1.0
- Dammer, K. (2023): Arbeitstagung Sensorgestützte Erkennung von Schaderregern in Freilandkulturen am Leibniz-Institut für Agrartechnik und Bioökonomie Potsdam-Bornim (ATB), 11. und 12. Mai 2022. Gesunde Pflanzen. : p. 1-4. Online: https://doi.org/10.1007/s10343-022-00799-9 1.0
- Gautam, S.; Höhne, M.; Hansen, S.; Jenssen, R.; Kampffmeyer, M. (2023): This looks More Like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation. Pattern Recognition. (April): p. 109172. Online: https://doi.org/10.1016/j.patcog.2022.109172 1.0
Alle Publikationen aus dem Programmbereich