Forschen für eine nachhaltige Primärproduktion
Das Forschungspogramm widmet sich der standortangepassten, nachhaltigen Intensivierung im Bereich der primären landwirtschaftlichen Erzeugung bis hin zur Produktgewinnung.
Unsere Forschung reicht von umfangreicher Online-Datenerfassung über die Modellierung bis hin zur Prozessregelung. Technologische und verfahrenstechnische Forschungsaufgaben umfassen u. a. sensorgestützte Technologien für Precision Farming und Precision Horticulture, die Modellierung von Emissionen und des Mikroklimas natürlich belüfteter Stallsysteme sowie Haltungsumwelt-Tierwohl-Interaktion. Die Systembewertung analysiert Wirkzusammenhänge und Effekte in Bezug auf Umwelt und Ökonomie mit den Schwerpunkten Stickstoff, Treibhausgase und Wasser.
Ein Schwerpunkt unserer Forschung liegt in der Entwicklung und Anwendung von Sensoren für die Zustandserfassung bei Böden, Pflanzen und Tieren. Informationen über Nährstoffversorgung, Pflanzenwachstum, Krankheitsdruck, klimatische Bedingungen, Wasserbedarf, Atemfrequenz, Hitzestress, Fruchtreife oder andere Systemparameter können so erfasst werden. In-situ gewonnene Informationen fließen ein in die Entwicklung komplexer physiologischer und physikalischer Modelle, die Online-Analytik ist ein wesentliches Element einer individuellen und flexiblen Prozesssteuerung.
Präzisionspflanzenbau
Für die Bioökonomie ist der Pflanzenbau von zentraler Bedeutung: pflanzliche Biomasse ist nicht nur Nahrungs- und Futtermittel, sondern auch Grundlage für biobasierte Stoffe und Energie.
Die globalen Nachhaltigkeitsziele formulieren die aktuellen Herausforderungen für den Präzisionspflanzenbau: Es geht darum, die Produktivität zu erhöhen und dabei die natürlichen Ressourcen nachhaltig zu nutzen, Biodiversität, Ökosysteme, Bodenfruchtbarkeit und natürliche Habitate zu erhalten, den Einfluss von invasiven Arten zu reduzieren sowie ein umweltgerechtes Management von Chemikalien zu gewährleisten.
Wir arbeiten daher an Lösungen für ein sensorgestütztes lokales Ressourcenmanagement im Präzisionsackerbau und im Präzisionsgartenbau. Ziel unserer Forschung ist es, die Effizienz in der Pflanzenproduktion zu erhöhen, insbesondere durch adaptive Prozesssteuerung und Entwicklung technischer Lösungen für eine individualisierte Pflanzenproduktion, und so den Ressourcenverbrauch, Mitteleinsatz und die Emissionen zu reduzieren.
Innovative Sensortechnologien eröffnen dabei neue Möglichkeiten im Bereich der Erfassung (Informations- und Kommunikationstechnik, Telemetrie und Robotik), Verarbeitung (Big Data) und Analyse von Daten (Genomik, Phänomik und Bioinformatik). Sie sind grundlegende Tools im digitalen Transformationsprozess der Landwirtschaft. Die gewonnenen Informationen fließen in die Entwicklung komplexer physiologischer und physikalischer Modelle ein, die eine präzise Steuerung der Produktionsprozesse im Sinne einer nachhaltigen Intensivierung ermöglichen.
Tierhaltung
Konzepte der Nutztierhaltung sollen die drei Säulen der Nachhaltigkeit Umwelt, Soziales und Ökonomie integrieren. Dies findet teilweise im Spannungsfeld von Interessenkonflikten statt. Während in der Gesellschaft der Wunsch nach mehr Tierwohl und mehr Umweltschutz wächst, müssen gleichzeitig die ökonomischen Überlebensnotwendigkeiten der Landwirte berücksichtigt werden, damit innovative Verfahren Eingang in die Praxis finden können.
Wir richten deshalb unsere anwendungsorientierte Grundlagenforschung in der Tierhaltung auf die Verbesserung von Tierwohl, Haltungsumwelt, Tier- und Umweltschutz sowie Wettbewerbsfähigkeit aus. Unsere Ziele sind: objektive Tierwohlstandards, Konzepte zur Lösung von Umweltkonflikten, transparente Tierhaltung, Akzeptanz beim Verbraucher und regionale Wertschöpfung.
Zu allen Mitarbeiter*innen des Programms Präzisionslandwirtschaft in Pflanzenbau und Tierhaltung
Aktuelles
Veranstaltungen
Forschungsprojekte
-
FAIRagro vereint die Gemeinschaft der Agrosystemforschung und entwickelt eine maßgeschneiderte, digitale Infrastruktur.
-
Projekt im Rahmen des Mobilitätsförderprogramms des Chinesisch-Deutschen Zentrum für Wissenschaftsförderung mit Forschern der Sun Yat-sen Universität und des ATB bzw. der Universität Potsdam zum Thema Verlässliche künstl…
-
Das Ziel des Projektes Explaining 4.0 ist die Entwicklung von Methoden, die einen signifikanten Beitrag zu einem ganzheitlichen -globalen- Verständnis von KI-Modellen leisten. Dabei sind Effizienz (durch a priori Wissen)…
-
Vom 30. Juni bis zum 5. Juli organisierte die Plattform Wissenschaft und Technologie (W&T) des Deutsch-Chinesischen Landwirtschaftszentrums (DCZ) in Zusammenarbeit mit der Chinesischen Akademie für Agrarwissenschaften (C…
-
Im Fokus von ALCIS steht das Bewässerungsmanagement landwirtschaftlicher Kulturen. Ziel ist die Entwicklung eines kostengünstigen sensorgesteuerten Netzwerkknotensystems für Boden-Pflanze-Atmosphäre-Messungen und dessen …
Alle Projekte aus dem Forschungsprogramm Präzisionslandwirtschaft in Pflanzenbau und Tierhaltung
Publikationen aus dem Programm
- Specka, X.; Martini, D.; Weiland, C.; Arend, D.; Asseng, S.; Boehm, F.; Feike, T.; Fluck, J.; Gackstetter, D.; Gonzales-Mellado, A.; Hartmann, T.; Haunert, J.; Hoedt, F.; Hoffmann, C.; König, P.; Lange, M.; Lesch, S.; Lindstädt, B.; Lischeid, G.; Möller, M.; Rascher, U.; Reif, J.; Schmalzl, M.; Senft, M.; Stahl, U.; Svoboda, N.; Usadel, B.; Webber, H.; Ewert, F. (2023): FAIRagro: ein Konsortium in der nationalen Forschungsdateninfrastruktur (NFDI) für Forschungsdaten in der Agrosystemforschung. Informatik Spektrum. (Januar): p. 1-12. Online: https://doi.org/10.1007/s00287-022-01520-w 1.0
- Berg, G.; Schweitzer, M.; Abdelfattah, A.; Cernava, T.; Wassermann, B. (2023): Missing symbionts - emerging pathogens? Microbiome management for sustainable agriculture. SYMBIOSIS. : p. 163-171. Online: https://doi.org/10.1007/s13199-023-00903-1 1.0
- Kim, J.; Savolainen, T.; Voitsik, P.; Kravchenko, E.; Lisakov, M.; Kovalev, Y.; Müller, H.; Lobanov, A.; Sokolovsky, K.; Bruni, G.; Edwards, P.; Reynolds, C.; Bach, U.; Gurvits, L.; Krichbaum, T.; Hada, K.; Giroletti, M.; Orienti, M.; Anderson, J.; Lee, S.; Sohn, B.; Zensus, J. (2023): RadioAstron Space VLBI Imaging of the jet in M87: I. Detection of high brightness temperature at 22 GHz. arXiv. : p. 1-27. Online: https://doi.org/10.48550/arXiv.2304.09816 1.0
- Amo-Aidoo, A.; Kumi, E.; Hensel, O.; Korese, J.; Sturm, B. (2022): Solar energy policy implementation in Ghana: A LEAP model analysis. Scientific African. (July): p. 1162. Online: https://doi.org/10.1016/j.sciaf.2022.e01162 1.0
- Cernava, T.; Rybakova, D.; Buscot, F.; Clavel, T.; McHardy, A.; Meyer, F.; Meyer, F.; Overmann, J.; Stecher, B.; Sessitsch, A.; Schloter, M.; Berg, G. (2022): Metadata harmonization - Standards are the key for a better usage of omics data for integrative microbiome analysis. Environmental Microbiome. : p. 33. Online: https://doi.org/10.1186/s40793-022-00425-1 1.0
- Berg, G.; Cernava, T. (2022): The plant microbiota signature of the Anthropocene as a challenge for microbiome research. Microbiome. : p. 54. Online: https://doi.org/10.1186/s40168-021-01224-5 1.0
- Wicaksona, W.; Braun, M.; Bernhardt, J.; Riedel, K.; Berg, G. (2022): Trade-off for survival: Microbiome response to chemical exposure combines activation of intrinsic resistances and adapted metabolic activity. Environment International. : p. 107474. Online: https://doi.org/10.1016/j.envint.2022.107474 1.0
- Peixoto, R.; Voolstra, C.; Sweet, M.; Duarte, C.; Carvalho, S.; Villela, H.; Lunshof, J.; Gram, L.; Woodhams, D.; Walter, J.; Roik, A.; Hentschel, U.; Thurber, R.; Daisley, B.; Ushijima, B.; Daffonchio, D.; Costa, R.; Keller-Costa, T.; Bowman, J.; Rosado, A.; Reid, G.; Mason, C.; Walke, J.; Thomas, T.; Berg, G. (2022): Harnessing the microbiome to prevent global biodiversity loss. Nature Microbiology. (6): p. 1726-1735. Online: https://doi.org/10.1038/s41564-022-01173-1 1.0
- Senft, M.; Stahl, U.; Svoboda, N. (2022): Research data management in agricultural sciences in Germany: We are not yet where we want to be. PLoS One. (9): p. 274677. Online: https://doi.org/10.1371/journal.pone.0274677 1.0
- Wicaksono, W.; Egamberdieva, D.; Berg, C.; Mora, M.; Kusstatscher, P.; Cernava, T.; Berg, G. (2022): Function-Based Rhizosphere Assembly along a Gradient of Desiccation in the Former Aral Sea. Msystems. (6): p. 0. Online: https://doi.org/10.1128/msystems.00739-22 1.0
Alle Publikationen aus dem Forschungsprogramm Präzisionslandwirtschaft in Pflanzenbau und Tierhaltung