Researching for a sustainable primary production
The research program is dedicated to site-specific sustainable intensification in the area of primary agricultural production all the way to harvesting.
Our research ranges from a comprehensive online data collection to modelling and process control. Technological and process engineering tasks include sensor-based technologies for precision farming and precision horticulture, the modelling of emissions and of the microclimate in naturally ventilated barn systems as well as the interaction between housing environment and animal welfare. The system assessment is analysing interactions and effects in relation to environment and economy. Here, we concentrate on nitrogen, greenhouse gases and water.
One focus of our research is to develop and apply sensors for assessing the condition of soils, plants and animals. Information on system parameters such as nutrient supply, plant growth, disease pressure, climatic conditions, water demand, respiratory rate, heat stress, fruit ripeness or others can be recorded. Information collected in-situ integrates into the development of complex physiological and physical models. Online analysis is an essential element of individual and flexible process control.
Precision crop production
Crop production is of central importance for the bio-economy: plant biomass not only provides food and animal feed, but is also the basis for bio-based materials and energy.
The global sustainability goals outline the current challenges for precision crop production: to increase productivity while using natural resources in a sustainable manner, to preserve biodiversity, ecosystems, soil fertility and natural habitats, to reduce the impact of invasive species and to ensure that chemicals are managed in an environmentally sound manner.
We are thus working on solutions for sensor-supported local resource management in precision agriculture and precision horticulture. The aim of our research is to increase the efficiency of plant production, in particular by means of adaptive process control and the development of technical solutions for individualized plant production, thus reducing consumption of natural resources, the use of chemicals and of emissions.
Innovative sensor technologies are opening up new possibilities in the field of data acquisition (information and communication technology, telemetry and robotics), processing (Big Data) and analysis of data (genomics, phenomics and bioinformatics). They are fundamental tools in the digital transformation process that agriculture is facing. The information obtained is used to develop complex physiological and physical models that enable precise control of production processes in the sense of a sustainable intensification.
Livestock Management
Animal husbandry concepts should integrate the three pillars of sustainability - environment, society and economy. Solutions have to be found in the area of conflicting interests. While the public's desire for improved animal welfare and more environmental protection is growing, the economic imperatives for the survival of farmers must also be taken into account to ensure that innovative processes can find their way into practice.
We therefore focus our application-oriented basic research in animal husbandry on the improvement of animal welfare, housing environment, animal and environmental protection and on maintaining economic competitiveness. Our goals are: objective animal welfare standards, concepts for solving environmental conflicts, transparent animal husbandry, consumer acceptance and added value from a regional production.
To the team of the research program 'Precision farming in crop and livestock management'
Research projects
-
The adaptation of RES technologies and machinery and their demonstration at a large-scale on farm level, require supporting measures with respect to spatial planning, infrastructure, different business models and market …
-
Large areas of agricultural land in W. and N. Africa are heavily degraded, with water scarcity, low soil fertility and poor plant health, due to use of unsuitable agronomic systems and inappropriate management. In W. Afr…
-
The targeted use of crop protection agents as required according to the occurrence of pests requires sensor-supported monitoring of the crop fields. The project aims to develop sensor-based methods that enable automated …
-
SMART4ALL builds capacity amongst European stakeholders via the development of selfsustained, cross-border experiments that transfer knowledge and technology between academia and industry. It targets CLEC CPS and the IoT…
-
The aim of the collaborative project is to develop a modularized mobile system, which will enable an initial spatio-temporal high-resolution population monitoring (4D) of insect populations in orchards, in order to imple…
More projects within the research program 'Precision farming in crop and livestock production'
Publications of the program
- Cárdenas, A.; Ammon, C.; Schumacher, B.; Stinner, W.; Herrmann, C.; Schneider, M.; Weinrich, S.; Fischer, P.; Amon, B.; Amon, T. (2021): Methane emissions from storage of liquid dairy manure: influence of season, temperature and storage duration. Waste Management. : p. 393-402. Online: https://doi.org/10.1016/j.wasman.2020.12.026 1.0
- Arsalan, M.; Khan, Z.; Sultan, M.; Ali, I.; Shakoor, A.; Mahmood, M.; Ahmad, M.; Shamshiri, R.; Imran, M.; Khalid, M. (2021): Experimental investigation of a wastewater treatment system utilizing maize cob as trickling filter media. Parlar Research and Technology. (1): p. 148-157. Online: https://www.prt-parlar.de/download_feb_2021/ 1.0
- Kreidenweis, U.; Breier, J.; Herrmann, C.; Libra, J.; Prochnow, A. (2021): Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production. Journal of Cleaner Production. : p. 124969. Online: https://doi.org/10.1016/j.jclepro.2020.124969 1.0
- Hoffmann, G.; Herbut, P.; Pinto, S.; Heinicke, J.; Kuhla, B.; Amon, T. (2020): Review paper: Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosystems Engineering. (Special Issue: Environmental stressors): p. 83-96. Online: https://doi.org/10.1016/j.biosystemseng.2019.10.017 1.0
- Llonch, P.; Pires, J.; Hoffmann, G.; Bodas, R.; Mirbach, D.; Verwer, C.; Haskell, M. (2020): Opinion paper - Measuring livestock robustness and resilience: are we on the right track?. animal. (4): p. 667-669. Online: https://doi.org/10.1017/S1751731119003306 1.0
- Maffia, J.; Dinuccio, E.; Amon, B.; Balsari, P. (2020): PM emissions from open field crop management: emissions factors, estimation/assessment methods and mitigation measures - A review. Atmospheric Environment. (Apr): p. 117381. Online: https://doi.org/10.1016/j.atmosenv.2020.117381 1.0
- Techen, A.; Helming, K.; Brüggemann, N.; Veldkamp, E.; Reinhold-Hurek, B.; Lorenz, M.; Bartke, S.; Heinrich, U.; Amelung, W.; Augustin, K.; Boy, J.; Corre, M.; Duttmann, R.; Gebbers, R.; Gentsch, N.; Grosch, R.; Guggenberger, G.; Kern, J.; Kiese, R.; Kuhwald, M.; Leinweber, P.; Schloter, M.; Wiesmeier, M.; Winkelmann, T.; Vogel, H. (2020): Soil research challenges in response to emerging agricultural soil management practices. Advances in Agronomy. (161): p. 179-240. Online: https://www.sciencedirect.com/science/article/pii/S0065211320300146?via%3Dihub 1.0
- Sanz-Cobena, A.; Alessandrini, R.; Bodirsky, B.; Springmann, M.; Aguilera, E.; Amon, B.; Bartolini, F.; Geupel, M.; Grizzetti, B.; Kugelberg, S.; Latka, C.; Liang, X.; Milford, A.; Musinguzi, P.; Ng, E.; Suter, H.; Leip, A. (2020): Research meetings must be more sustainable. nature food. (4): p. 187-189. Online: https://doi.org/10.1038/s43016-020-0065-2 1.0
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. (2020): Critical THI thresholds based on the physiological parameters of lactating dairy cows. Journal of Thermal Biology. (Februar 2020): p. 102523-102523. Online: https://doi.org/10.1016/j.jtherbio.2020.102523 1.0
- Kupper, T.; Häni, C.; Neftel, A.; Kincaid, C.; Bühler, M.; Amon, B.; VanderZaag, A. (2020): Ammonia and greenhouse gas emissions from slurry storage - a review. Agriculture, Ecosystems & Environment. (15 September 2020): p. 106963. Online: https://doi.org/10.1016/j.agee.2020.106963 1.0
More publications of the research program