Dr. rer. agr. Christiane Herrmann
Aufsätze in referierten Fachzeitschriften [45 Ergebnisse]
- Ramm, P.; Abendroth, C.; Latorre Perez, A.; Herrmann, C.; Sebök, S.; Geißler, A.; Vilanova, C.; Porcar, M.; Dornack, C.; Bürger, C.; Schwarz, H.; Luschnig, O. (2020): Ammonia removal during leach-bed acidification leads to optimized organic acid production from chicken manure. Renewable Energy. (Feb): p. 1021-1030. Online: https://doi.org/10.1016/j.renene.2019.07.021
- Theuerl, S.; Herrmann, C.; Heiermann, M.; Grundmann, P.; Landwehr, N.; Kreidenweis, U.; Prochnow, A. (2019): The Future Agricultural Biogas Plant in Germany: A Vision. Energies. (3): p. 396. Online: https://doi.org/10.3390/en12030396
- Strauß, C.; Herrmann, C.; Weiser, C.; Kornatz, P.; Heiermann, M.; Aurbacher, J.; Müller, J.; Vetter, A. (2019): Can energy cropping for biogas production diversify crop rotations? - Findings from a multi-site experiment in Germany. BioEnergy Research. (1): p. 123-136. Online: https://doi.org/10.1007/s12155-019-9960-5
- Thomas, C.; Idler, C.; Ammon, C.; Herrmann, C.; Amon, T. (2019): Inactivation of ESBL-/AmpC-producing Escherichia coli during mesophilic and thermophilic anaerobic digestion of chicken manure. Waste Management. (February): p. 74-82. Online: https://doi.org/10.1016/j.wasman.2018.11.028
- Ramm, P.; Terboven, C.; Neitmann, E.; Sohling, U.; Mumme, J.; Herrmann, C. (2019): Optimized production of biomethane as an energy vector from low-solids biomass using novel magnetic biofilm carriers. Applied Energy. (Oct): p. 113389. Online: https://doi.org/10.1016/j.apenergy.2019.113389
- Terboven, C.; Ramm, P.; Herrmann, C. (2017): Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions. Bioresource Technology. : p. 582-592. Online: http://dx.doi.org/10.1016/j.biortech.2017.05.150
- Peter, C.; Specka, X.; Aurbacher, J.; Kornatz, P.; Herrmann, C.; Heiermann, M.; Müller, J.; Nendel, C. (2017): The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation. Agricultural Systems. (March): p. 67-79. Online: http://dx.doi.org/10.1016/j.agsy.2016.12.008
- Herrmann, C.; Plogsties, V.; Willms, M.; Hengelhaupt, F.; Eberl, V.; Eckner, J.; Strauß, C.; Idler, C.; Heiermann, M. (2016): Methanbildungspotenziale verschiedener Pflanzenarten aus Energiefruchtfolgen. Methane production potential of various crop species grown in energy crop rotations. Landtechnik - Agricultural Engineering. (6): p. 194-209. Online: http://dx.doi.org/10.15150/lt.2016.3142
- Herrmann, C.; Kalita, N.; Wall, D.; Xia, A.; Murphy, J. (2016): Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology. (Aug 2016): p. 328-337. Online: http://dx.doi.org/10.1016/j.biortech.2016.04.119
- Xia, A.; Jacob, A.; Tabassum, M.; Herrmann, C.; Murphy, J. (2016): Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresource Technology. (April): p. 118-125. Online: http://dx.doi.org/10.1016/j.biortech.2016.01.025