Dr. rer. agr. Christiane Herrmann
Aufsätze in referierten Fachzeitschriften [42 Ergebnisse]
- Thomas, C.; Idler, C.; Ammon, C.; Herrmann, C.; Amon, T. (2019): Inactivation of ESBL-/AmpC-producing Escherichia coli during mesophilic and thermophilic anaerobic digestion of chicken manure. Waste Management. (February): p. 74-82. Online: https://doi.org/10.1016/j.wasman.2018.11.028
- Ramm, P.; Terboven, C.; Neitmann, E.; Sohling, U.; Mumme, J.; Herrmann, C. (2019): Optimized production of biomethane as an energy vector from low-solids biomass using novel magnetic biofilm carriers. Applied Energy. (Oct): p. 113389. Online: https://doi.org/10.1016/j.apenergy.2019.113389
- Terboven, C.; Ramm, P.; Herrmann, C. (2017): Demand-driven biogas production from sugar beet silage in a novel fixed bed disc reactor under mesophilic and thermophilic conditions. Bioresource Technology. : p. 582-592. Online: http://dx.doi.org/10.1016/j.biortech.2017.05.150
- Peter, C.; Specka, X.; Aurbacher, J.; Kornatz, P.; Herrmann, C.; Heiermann, M.; Müller, J.; Nendel, C. (2017): The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation. Agricultural Systems. (March): p. 67-79. Online: http://dx.doi.org/10.1016/j.agsy.2016.12.008
- Herrmann, C.; Plogsties, V.; Willms, M.; Hengelhaupt, F.; Eberl, V.; Eckner, J.; Strauß, C.; Idler, C.; Heiermann, M. (2016): Methanbildungspotenziale verschiedener Pflanzenarten aus Energiefruchtfolgen. Methane production potential of various crop species grown in energy crop rotations. Landtechnik - Agricultural Engineering. (6): p. 194-209. Online: http://dx.doi.org/10.15150/lt.2016.3142
- Herrmann, C.; Kalita, N.; Wall, D.; Xia, A.; Murphy, J. (2016): Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology. (Aug 2016): p. 328-337. Online: http://dx.doi.org/10.1016/j.biortech.2016.04.119
- Xia, A.; Jacob, A.; Tabassum, M.; Herrmann, C.; Murphy, J. (2016): Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresource Technology. (April): p. 118-125. Online: http://dx.doi.org/10.1016/j.biortech.2016.01.025
- Herrmann, C.; Idler, C.; Heiermann, M. (2016): Biogas crops grown in energy crop rotations: linking chemical composition and methane production characteristics. Bioresource Technology. (April): p. 23-35. Online: http://dx.doi.org/10.1016/j.biortech.2016.01.058
- Herrmann, C.; Idler, C.; Heiermann, M. (2015): Improving aerobic stability and biogas production of maize silage using silage additives. Bioresource Technology. (Dec): p. 393-403. Online: http://dx.doi.org/10.1016/j.biortech.2015.08.114
- Herrmann, C.; Prochnow, A.; Heiermann, M.; Idler, C. (2014): Biomass from landscape management used for biogas production: effects of harvest date and silage additives on feedstock quality and methane yields. Grass and forage Science. (4 Dec): p. 549-566. Online: http://onlinelibrary.wiley.com/doi/10.1111/gfs.12086/abstract