Aufsätze in referierten Fachzeitschriften
- Pecenka, R.; Lenz, H.; Hering, T. (2020): Options for Optimizing the Drying Process and Reducing Dry Matter Losses in Whole-Tree Storage of Poplar from Short-Rotation Coppices in Germany. Forests. (4): p. 374. Online: https://doi.org/10.3390/f11040374 1.0
- Maus, I.; Klocke, M.; Derenko, J.; Stolze, Y.; Beckstette, M.; Jost, C.; Wibberg, D.; Blom, J.; Henke, C.; Willenbücher, K.; Rumming, M.; Rademacher, A.; Pühler, A.; Sczyrba, A.; Schlüter, A. (2020): Impact of process temperature and organic loading rate on cellulolytic / hydrolytic biofilm microbiomes during biomethanation of ryegrass silage revealed by genome-centered metagenomics and metatranscriptomics. Environmental Microbiome. : p. 7. Online: https://doi.org/10.1186/s40793-020-00354-x 1.0
- Montalvo, S.; Huilinir, C.; Borja, R.; Sanchez, E.; Herrmann, C. (2020): Application of zeolites for biological treatment processes of solid wastes and wastewaters - A review. Bioresource Technology. (April): p. 0. Online: https://doi.org/10.1016/j.biortech.2020.122808 1.0
- Schroedter, L.; Schneider, R.; Remus, L.; Venus, J. (2020): L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans. Resources. (7): p. 89. Online: https://doi.org/10.3390/resources9070089 1.0
- Klang, J.; Szewzyk, U.; Bock, D.; Theuerl, S. (2020): Effect of a profound feedstock change on the structure and performance of biogas microbiomes. Microorganisms. (2): p. 169. Online: https://doi.org/10.3390/microorganisms8020169 1.0
- López Gómez, J.; Perez-Rivero, C.; Venus, J. (2020): Valorisation of solid biowastes: The lactic acid alternative. Process Biochemistry. (Dec): p. 222-235. Online: https://doi.org/10.1016/j.procbio.2020.08.029 1.0
- Cubas-Cano, E.; López Gómez, J.; Gonzalez-Fernandez, C.; Ballesteros, I.; Tomas-Pejo, E. (2020): Towards sequential bioethanol and L-lactic acid co-generation: Improving xylose conversion to L-lactic acid in presence of lignocellulosic ethanol with an evolved Bacillus coagulans,. Renewable Energy. (June 2020): p. 759-765. Online: https://doi.org/10.1016/j.renene.2020.02.066 1.0
- Mora-Villalobos,, J.; Montero-Zamora, J.; Barboza, N.; Rojas-Garbanzo, C.; Usaga, J.; Redondo-Solano, M.; Schroedter, L.; Olszewska-Widdrat, A.; López Gómez, J. (2020): Multi-Product Lactic Acid Bacteria Fermentations: A Review. Fermentation. (1): p. 23. Online: http://dx.doi.org/10.3390/fermentation6010023 1.0
- Ro, K.; Libra, J.; Alvarez-Murillo, A. (2020): Comparative Studies on Water- and Vapor-Based Hydrothermal Carbonization: Process Analysis. Energies. (21): p. 5733. Online: https://doi.org/10.3390/en13215733 1.0
- Alexandri, M.; Blanco-Catala, J.; Schneider, R.; Turon, X.; Venus, J. (2020): High L(+)-lactic acid productivity in continuous fermentations using bakery waste and lucerne green juice as renewable substrates. Bioresource Technology. (Nov): p. 123949. Online: https://doi.org/10.1016/j.biortech.2020.123949 1.0