
Dr. rer. agr. Christiane Herrmann
Department: Dep. Microbiome Biotechnology
Program areas
Research areas
- Anaerobic digestion of organic by-products and residues and crop feedstocks
- Bioprocess optimisation and development of feedstock-adapted anaerobic digestion technologies
- Preservation and storage of biomass for biogas production
- Crop rotations and cropping systems for the production of biogas crops
- Energetic utilisation of semi-natural grassland
- Evaluation of biomass supply chains
Scientific activities
- Guest Editor of the research topic "Advanced Biofuel Production and Cascading Bioenergy Systems", Frontiers in Energy Research
- Member of the KTBL working group "Gas yields"
- Member of the VDLUFA/KTBL working group intelaboratory study biogas (since 2017)
- FNR/KTBL programme committee member for the congress "Biogas in agriculture - state and perspectives" (2016-2017, 2018-2019, 2020-2021, 2022-2023)
- Member of the guideline committee of the Association of German Engineers (VDI) – VDI 4630 Fermentation of organic materials
Projects
- BIOADVAN – Advanced Biomass-Treatment for Value-Added Refinement Ziel des Projekts ist die wertschöpfende Verarbeitung von Biomasse durch neuartige und fortschrittliche Technologien, um das ökologische und wirtschaftliche Potenzial biogener Ressource…
- EMeRGE – Entwicklung eines Verfahrens zur gezielten Minderung von Methanemissionen bei der Gülle- und Gärrestlagerung mit Möglichkeit der Reaktivierung und Erhaltung des Gasbildungspotenzials für die Biogasproduktion Ziel des Verbundprojekts ist die …
- bio4value – Effizienzsteigerung und Emissionsminimierung von Biogasanlagen bei gleichzeitiger Reduktion der Anlagenkomplexität durch innovative Gastrennverfahren Ziel des Verbundvorhabens ist die Entwicklung von neuartigen Gastrennmembranen und Membr…
- Sequenz – Entschlüsselung des mikrobiellen Vernetzungsgrades innerhalb von Wirtschaftsdünger- und Biogas-Mikrobiomen Finanzierung von Sequenzierungskosten: Entschlüsselung des mikrobiellen Vernetzungsgrades innerhalb von Wirtschaftsdünger- und Biogas…
- BioSaiFle – Systemdienlicher Ausgleich der jahreszeitlichen Schwankungen des Energiebedarfs durch saisonal flexibilisierte Biogaserzeugung am Praxisbeispiel der Nutzung von Extensiv- und Biotopgrünland; Teilvorhaben 3: Gasproduktionsprofile und Proze…
- EuReffuS-clean biogas – Entwicklung eines innovativen Verfahrens zur dezentralen, energieautarken Verwertung von Reststoffen für die Biogasgewinnung (EuReffuS - clean biogas) Zielstellung ist die Entwicklung eines leistungsstarken Verfahrens zur kamp…
- Entwicklung eines innovativen Verfahrens zur dezentralen, energieautarken Verwertung von Reststoffen für die Biogasgewinnung Zielstellung ist die Entwicklung eines leistungsstarken Verfahrens zur kampagnenartigen energetischen Verwertung von flüssige…
- M4Models – Wirtschaftsdüngermanagement zur Minderung von Methanemissionen: Verbesserte Modellierung in Emissionsinventaren als Unterstützung für politische Handlungsoptionen (M4Models) Das Projekt M4Models wird das Minderungspotenzial für Treibhausga…
- LaRa – Landwirtschaftliche Rest- und Abfallstoffverwertung - Lösungsansätze zur technischen Anpassung bestehender Biogasanlagen für die Nutzung faseriger Reststoffe; Teilvorhaben 2: Prozesstechnische Untersuchungen (LaRa) Ziel des Vorhabens ist die E…
- Opti-Methan – Optimierung der Methanausbeute in landwirtschaftlichen Biogasanlagen Ziel des Vorhabens ist es, die Effizienz neu errichteter und bestehender Biogasanlagen durch Optimierung der Prozessstufen Fermentation und Gärrestlagerung zu steigern…
Publications
- Pasteris, A.; Heiermann, M.; Theuerl, S.; Plogsties, V.; Jost, C.; Prochnow, A.; Herrmann, C. (2022): Multi-advantageous sorghum as feedstock for biogas production: a comparison between single-stage and two-stage anaerobic digestion systems. Journal of Cleaner Production. (15 July): p. 131985. Online: https://doi.org/10.1016/j.jclepro.2022.131985
- Vargas Soplin, A.; Kreidenweis, U.; Herrmann, C.; Prochnow, A. (2022): The potential for biogas production from autumn tree leaves to supply energy and reduce greenhouse gas emissions - a case study from the city of Berlin. Resources, Conservation & Recycling. (Dezember): p. 106598. Online: https://doi.org/10.1016/j.resconrec.2022.106598
- El Gnaoui, Y.; Frimane, A.; Lahboubi, N.; Herrmann, C.; Barz, M.; El Bari, H. (2022): Biological pre-hydrolysis and thermal pretreatment applied for anaerobic digestion improvement: experimental study and statistical variable selection using Mutual information and Principal component analysis. Cleaner Waste Systems. (2): p. 100005-10. Online: https://doi.org/10.1016/j.clwas.2022.100005
- Yahya, M.; Herrmann, C.; Samir, I.; Jost, C.; Truppel, I.; Ghorbal, A. (2022): Kinetic studies for hydrogen and methane co-production from food wastes using multiple models. Biomass & Bioenergy. (June): p. 106449. Online: https://doi.org/10.1016/j.biombioe.2022.106449
- Hilgert, J.; Amon, B.; Amon, T.; Belek, V.; Dragoni, F.; Ammon, C.; Cárdenas, A.; Petersen, S.; Herrmann, C. (2022): Methane emissions from livestock slurry: effects of storage temperature and changes in chemical composition. Sustainability. (16): p. 9934. Online: https://doi.org/10.3390/su14169934
- Pasteris, A.; Zapka, O.; Plogsties, V.; Herrmann, C.; Heiermann, M. (2021): Effects of sorghum biomass quality on ensilability and methane yield. Global Change Biology Bioenergy. (5): p. 803-822. Online: https://doi.org/10.1111/gcbb.12814
- Kreidenweis, U.; Breier, J.; Herrmann, C.; Libra, J.; Prochnow, A. (2021): Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production. Journal of Cleaner Production. : p. 124969. Online: https://doi.org/10.1016/j.jclepro.2020.124969
- Cárdenas, A.; Ammon, C.; Schumacher, B.; Stinner, W.; Herrmann, C.; Schneider, M.; Weinrich, S.; Fischer, P.; Amon, T.; Amon, B. (2021): Methane emissions from storage of liquid dairy manure: influence of season, temperature and storage duration. Waste Management. (Feb): p. 393-402. Online: https://doi.org/10.1016/j.wasman.2020.12.026
- Yahya, M.; Herrmann, C.; Ismaili, S.; Jost, C.; Truppel, I.; Ghorbal, A. (2021): Development and optimization of an innovative three-stage bioprocess for converting food wastes to hydrogen and methane. Biochemical Engineering Journal. (Juni): p. 107992. Online: https://doi.org/10.1016/j.bej.2021.107992
- Sánchez, E.; Herrmann, C.; Schultze, M.; Borja, R. (2021): Effect of organic loading rate on the anaerobic digestion of swine waste with biochar addition. Environmental Science and Pollution Research. : p. 38455-38465. Online: https://doi.org/10.1007/s11356-021-13428-1
Veröffentlichungen vor ATB-Zugehörigkeit
E. Allen, D. Wall, C. Herrmann, J.D. Murphy (2016). A detailed assessment of variation in biomethane potential of first, second and third Generation substrates. Renewable Energy 87, 656-665.
A. Xia, A. Jacob, C. Herrmann, J.D. Murphy (2016). Fermentative biohydrogen production from galactose. Energy 96, 346-354.
C. Herrmann, J. FitzGerald, R. O’Shea, A. Xia, P. O’Kiely, J.D. Murphy (2015). Ensiling of seaweed for a seaweed biofuel industry. Bioresource Technology 196, 301-313.
A. Xia, A. Jacob, C. Herrmann, M.R. Tabassum, J.D. Murphy (2015). Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol. Bioresource Technology 193, 488-497.
D.M. Wall, B. Straccialini, A. Ellen, P. Nolan, C. Herrmann, P. O’Kiely, J.D. Murphy (2015). Investigation of the effect of particle size and rumen fluid addition on specific methane yields of high lignocellulose grass silage. Bioresource Technology 192, 266-271.
A. Xia, C. Herrmann, J.D. Murphy (2015). How do we optimize third-generation algal biofuels? Biofuels, Bioproducts and Biorefining 9, 358-367; DOI: 10.1002/bbb.1550.
E. Allen, D.M. Wall, C. Herrmann, A. Xia, J.D. Murphy (2015). What is the gross energy yield of third generation gaseous biofuel sourced from seaweed? Energy 81, 352-360.
E. Allen, D.M. Wall, C. Herrmann, J.D. Murphy (2014). Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel. Bioresource Technology 170, 436-444.
Curriculum Vitae
since 01/2016
Research Scientist at the Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB)
Department of Bioengineering
06/2015 - 12/2015
Research Scientist at the Leibniz Institute for Agricultural Engineering Potsdam-Bornim
Department of Technology Assessment and Substance Cycles
01/2014 - 05/2015
Post-Doctoral Researcher at University College Cork, Ireland
Environmental Research Institute
Bioenergy and Biofuels Research Group
08/2005 - 01/2014
PhD and Post-Doctoral Researcher at the Leibniz Institute for Agricultural Engineering Potsdam-Bornim
Department of Technology Assessment and Substance Cycles
06/2010: Doctoral degree in Agricultural Science at the Humboldt-University of Berlin, Faculty of Agriculture and Horticulture
PhD thesis: ‘Harvest and ensiling of crop feedstock for biomethanation – process principles and evaluation’
11/2004 - 07/2005
Research associate at Saxon State Institute for Agriculture, Leipzig, Germany
Department of Crop Production
10/2002 - 10/2003
Research associate at VTI Thuringian Institute for Environmental Process Engineering and Energy
Department of Mechanical Engineering and Bioengineering
10/1999 – 09/2002
Student of Environmental Engineering at the Saxon University of Cooperative Education, Riesa, Germany
Dipl.-Ing. degree in Environmental Engineering (German equivalent to M.Eng.)