

Impact assessment of livestock production on water scarcity in a watershed located in southern Brazil

Authors:

MSc. Sofia Helena Zanella Carra; PD Dr. Katrin Drastig; Dr. Julio Cesar Pascale Palhares; Dr. Vania Elisabete Schneider; Dr. Taison Anderson Bortolin; Dr. Hagen Koch; Dr. Cintia Paese Giacomello

• Introducing myself

MSc. Sofia Helena Zanella Carra

Bachelor's degree in Environmental Engineering (University of Caxias do Sul, Brazil)

Master's degree in Engineering and Environmental Science (University of Caxias do Sul, Brazil)

Doctoral researcher at the ATB and Humboldt Universität zu Berlin (since October/2019) Department 2: Technology Assessment and Substance Cycles Supervisor: PD Dr. Katrin Drastig

Research Program 1 "Precision Farming in Crop and Livestock Production" Working Group "Water Productivity in Agriculture (AgroHyd)"

Evaluation of Water Productivity of Plant and Livestock Production in an Experimental Watershed Located in Southern Brazil

ATB

PhD project

Water productivity assessment on 115 farms Pig, poultry and dairy milk production

Ist and 2nd articles

Water scarcity footprint assessment in the watershed

3rd article (in progress)

Reporting back of key findings on the application of LEAP Water TAG guidelines to the LEAP Partnership Secretariat of the FAO

Article

The Effect of Best Crop Practices in the Pig and Poultry Production on Water Productivity in a Southern Brazilian Watershed

Sofia Helena Zanella Carra ^{1,}*¹, Julio Cesar Pascale Palhares ², Katrin Drastig ¹ and Vania Elisabete Schneider ³

Sofia Helena Zanella Carra ^{a,‡}, Julio Cesar Pascale Palhares ^b, Katrin Drastig ^a, Vania Elisabete Schneider ^c, Leandro Ebert ^d, Cintia Paese Giacomello ^e

MDPI

ATB 5

Lajeado Tacongava Watershed (150 km2)

Sub-watershed

Taquari-Antas Hydrographic Basin (26,430 km²)

• Study area

- Primary data collected on farms (study year: 2018)

- Pasture-based system (dairy cattle stay in the grassland): 57 farms
- Semi-confined system (dairy cattle stay inside the barn up to 6 hours day-1): 7 farms
- Confined system (dairy cattle stay inside the barn): 3 farms

Methodology – Water Productivity

Livestock Environmental Assessment and Performance (LEAP)

FAO LEAP Guidelines (2019)

"Water use in livestock production systems and supply chain"

Ratio of the net benefits to the amount of water consumed to produce those benefits

WPFeed = kg FM [kg FM*] water input (Qind) [m3]

*FM: fresh matter

Indirect water

Actual evapotranspiration (ET)

Modelling software AgroHyd Farmmodel

WPMass= kg CW* or FPCM** water input (Qind+dir) [m3]

*CW: carcass weight (poultry and pig); **FPCM: fat protein corrected milk

Data input

Scenarios assessed – Water Scarcity footprinting

	Recommended both metho	d by ds	Statistica (drier flo	l water flow w condition)	,)	Local r Brazil (n	egulations in ational, state) I	Recommended by Boulay et al. (2018)	Recommended by Hoekstra et al. (2012)
Sconarios	•	W	Ά		HWC			EWR	•
Scenarios	Runoff	Q95	Q90	Q80	Water consumption	Q95	50% Q95	Pastor et al. (2014)	Richter et al. (2010)
SC.1_AWARE	х				х			х	
SC.2_AWARE	х				х	х			
SC.3_AWARE			х		х	х			
SC.4_AWARE				х	х	х			
SC.5_AWARE		х			Х		х		
SC.1_BWSI	х				х				x
SC.2_BWSI	х				х	х			
SC.3_BWSI			х		х	х			
SC.4_BWSI				х	х	х			
SC.5_BWSI		х			х		х		

• Results – Water consumption

	Р	ig	Poul	ltry	Dairy	
Water input	% of Q input	m3	% of Q input	m3	% of Q input	m3
Feed (indirect)	99.6	10,418,691.8	99.4	17,215,578.3	97.3	9,542,402.0
Drinking (direct)	0.4	37,012.2	0.3	54,647.5	1.6	157,930.1
Cleaning (direct)	0.4	45,508.9	<0,01	17.1	0.5	53,464.1
Cooling (direct)			0.3	49,271.6	0.6	57,121.6
Total water consumption	0.8%	82,521.1	0.6%	103,936.2	2.7%	268,515.8
(direct water)						
(livestock water consumption)						

Groundwater: 73% (fractured aquifer) Surface water: 27%

• Results – Water productivity

WPpig [kgCW m ⁻³]	0.51 (0.8%/99.2%)
WPpoultry [kgCW m-3]	0.76 (0.6%/99.4%)
WPmilk_pasture-based [kgCW m-3]	1.01 (1.0% / 99.0%) ± 0.22 SD
WPmilk_semi-confined [kgCW m-3]	0.95 (0.7% / 99.3%) ± 0.19 SD
WPmilk_confined [kgCW m-3]	0.96 (0.8% / 99.2%) ± 0.11 SD

(% blue water / % green water)

*CW: carcass weight (poultry and pig) ; **FPCM: fat protein corrected milk

Article Article Define the Effect of Best Crop Practices in the Pig and poultry Production on Water Productivity in a Southern Brazilian Watershed Sofia Helena Zanella Carra ^{1,4}, Julio Cesar Pascale Palhares ², Katrin Drastig ¹, and ania Elisabete Schneider ³ State of the Total Reviewment 844 (2022) 1571 17 Contents lists available at ScienceDired Science of the Total Environment Journal homepage: www.elsevier.com/locate/scitotenv Water productivity of milk produced in three different dairy production systems in Southern Brazil

Sofia Helena Zanella Carra ^{a,*}, Julio Cesar Pascale Palhares ^b, Katrin Drastig ^a, Vania Elisabete Schneider ^c, Leandro Ebert ^d, Cintia Paese Giacomello ^e

• Results – Water scarcity - CF AWARE (SC.1; SC.3)

13

• Results – Water scarcity – BWSI (SC.1; SC.3)

Low blue water scarcity in all scenarios and throughout all months assessed.

AT

• Results – Water scarcity impact assessment

BWSI = binary (0 or 1) BWSI > 1 (max. water scarcity) BWSI < 1 (min. water scarcity)

Α

• Results – Water scarcity impact assessment

		Andrade et al. (2019)	
WSF results	using different CFAW	ARE	
	local CFAWARE SC.1_AWARE	CFAWARE (monthly) Taquari-Antas	Difference between the WSF (%)
	m3 world eq./m3 water used	m3 world eq./m3 water used	
Poultry	3.5	6.3	44.6
Pig	6.2	11.3	44.6
Milk_PB system	3.7	6.6	44.4
Milk_SC system	3.2	5.8	44.4
Milk_CO system	3.5	6.3	44.2

Taquari-Antas hydrographic basin (26,430 km²)

Watershed - study area (150 km2)

ATB

• Results – Water scarcity impact assessment

Andrade et al. (2019)

			loca SC.	al CFAW 1_AW/	VARE ARE				C Ta	CF Non aquari	-Agri -Anta	i as	Differer the	ice between WSF (%)	
		m	8 world	eq./m3	water u	sed		n	n3 world	d eq./m	3 wa	ter used			
P	Poultry Pig			3.5 6.2						5.5 10.	; 8			36.3 42.3	
Milk_PB s	system			3.7						6.2	2			40.1	
Milk_SC s	system			3.2						5.4	Ļ			40.0	
Milk_CO s	system			3.5						5.7	,			38.5	
Milk_CO s Boulay et al. (20 watershed level It is calculated b They should be	system 018) recou l. based on th used on re	mmend ne wate egions v	the ag r const vith a la	3.5 ggrega umptic ack of	tion o on-wei water	f CFAV ghted a flow da	vare fo averag	or <u>irri</u> g es at t	<u>gation</u> he mo	5.7 (CF ag	gri) a and v	and for <u>e</u> watersh	other sector: ed levels.	38.5 (CF non-a	to country of Industry, do
Milk_CO s Boulay et al. (20 watershed level It is calculated b They should be	outer (018) record (). () () () () () () () () () () () () ()	mmend ne wate egions w Mar	the ag r consi vith a la <u>Apr</u>	3.5 ggrega umptic ack of May	tion o on-wei water Jun	f CFAV ghted a flow da	VARE fraveragata.	or <u>irrig</u> es at t <u>Sep</u>	<u>tation</u> he mo	5.7 (CF ag nthly a	gri) a and v	and for <u>o</u> watersh CF Agri	other sectors ed levels. CF Non-Agri	38.5 CF non-a	gri) to country of Industry, do LIVESTO
Milk_CO s Boulay et al. (24 watershed level It is calculated b They should be 	ount of the system of the syst	mmend ne wate egions w <u>Mar</u> 1.2	the ag r const vith a la <u>Apr</u> 1.0	3.5 ggrega umptic ack of <u>May</u> 0.7	tion o on-wei water Jun 0.5	f CFAV ghted a flow da Jul 0.4	vare for averag ata. <u>Aug</u> 0.4	or <u>irrig</u> es at t <u>Sep</u> 0.4	<u>ation</u> he mo <u>Oct</u> 0.4	5.7 (CF ag nthly a <u>Nov</u> 0.7	, and v Dec 1.0	watersh <u>CF Agri</u> 1.0	other sectors ed levels. CF Non-Agri 0.7	38.5 (CF non-a) CF Default 0.9	to country or Industry, do

• Conclusion - WSF

- Low water scarcity observed in the study area in all scenarios assessed;
- Different definitions of WA and EWR depending on the country/state;
- Lack of data to integrate groundwater in the WSF assessment;
- Aggregated CFAWARE: livestock water consumption is integrated in a factor with other water users (CF non-agri);
- Results reinforce the importance of regionalized water scarcity assessment to achieve more accurate WSF results;
- Description of WSF assessement could be more clear in the LEAP Guidelines, bringing some examples;
- The LEAP Guidelines application could allow the comparison among studies, define benchmarks and provide more reliable data.

Acknowledgement

Prefeitura de Serafina Correa

Prefeitura de União da Serra

Prefeitura de Montauri

Prefeitura de Guaporé

Thank you!

Sofia Helena Zanella Carra Doctoral researcher

email: SZanella@atb-potsdam.de

