Workshop on Water use assessment of livestock production systems and supply chains (Potsdam, Germany; 14-16 Dec. 2022)

Ration Optimization to reduce Water Footprint & Methane Emission Intensity of Milk

Bhupendra Phondba Animal Nutrition Group National Dairy Development Board, India

☑ <u>bphondba@nddb.coop</u>

Overview

- Current scenario/ challenges
- Development & implementation of strategy
- Impact assessment (water footprint & methane)
- Way forward

Current Scenario/ Challenges

54% of India Faces High to **Extremely** High Water Stress

RAJASTHA

North-Western region:

• **40%** of national milk

Baseline Water Stress (withdrawals/available supply)

Low (<10%) Low to Medium (10-20%) Medium to High (20-40%) High (40-80%) Extremely High (>80%) Arid & Low Water Use

Feeding pattern

- Lack of awareness & skills among dairy farmers to optimize dairy rations.
- Nutrient imbalance (+20% energy, +28% protein, -20% calcium, -31% phosphorus).

□ Impact on productivity, economics & environment

- Lower yield of milk & milk constituents
- Higher cost of feeding & less income
- Higher water footprint & enteric methane emission intensity of milk.

Metabolizable Energy

🗖 Low 📕 Medium 📕 High

Low yielders (<8 kg/d) Medium yielders (8-12 kg/d) High yielders (>12 kg/d)

Nutrient status on traditional feeding system

Indigenous cows (n=12,798)Crossbred cows (n=75,525)Buffaloes (n=94,618)

Crude Protein

Calcium

Nutrient status on traditional feeding system

Indigenous cows (n=12,798)Crossbred cows (n=75,525)Buffaloes (n=94,618)

Phosphorus

Low yielders (<8 kg/d) Medium yielders (8-12 kg/d) High yielders (>12 kg/d)

Development & Implementation of Strategy

Ration Balancing Programme (RBP)

• Educate milk producers on ration balancing (RB) and nutrients required by milch animals by providing doorstep advisory services.

Ration Balancing Advisory Service

Ration	balancing	at farmer's	doorstep
--------	-----------	-------------	----------

Coverage of RBP	India	Gujarat
States	18	1
Milk unions, PCs	115	9 MUs
Animals	2,865,763	349,746
Farmers	2,157,497	233,878
Villages	33,374	2,753
LRPs deployed	31,148	3,136

Feeding Balanced Rations

Impact Assessment

Water Footprint Assessment

(Mekonnen & Hoekstra, 2012)

Water Footprint of feeds (DM basis)

Productivity, Economics and Water Footprint

Particular	Cow (<i>n</i> =91,356)		Buffalo (<i>n</i> =105,866)	
	Before RB	After RB	Before RB	After RB
DM (kg/d)	14.72 ^a	12.15 ^b	15.28 ^a	13.61 ^b
Milk yield (kg/d)	9.16 ^a	9.39 ^b	7.26 ^a	7.41 ^b
Milk fat (%)	4.10 ^a	4.20 ^b	6.99 ^a	7.20 ^b
FUE (kg FCM/kg DM)	0.649 ^a	0.784 ^b	0.541 ^a	0.610 ^b
		100.07		
Feeding cost (Rs./animal/d)	147.55 ^a	126.65 ^D	161.78 ^a	147.28 ^D
Production cost (Rs./kg milk)	18.67ª	15.07 ^b	25.37ª	22.02 ^b
Net income (Rs./animal/d)	35.92ª	66.44 ^b	88.03ª	117.22 ^b
	0			
Water footprint (lit./kg milk)	1071 ^a	908 ^b	1416 ^a	1230 ^b
Water footprint (lit./kg FPCM)	1060 ^a	892 ^b	1034 ^a	890 ^b
2-3% extra milk Rs.	<mark>30 extra inc</mark>	ome 15	<mark>% lower WF</mark>	(<i>P</i> <0.05)
Water saved due to RBP:	87 million n	n ³ / year		15

Consumptive water use (lit./animal/d)

	Cow (<i>n</i> =91,356)		Buffalo (<i>n</i> =105,866)	
Activity	Before RB	After RB	Before RB	After RB
Feeding (Green)	3788	3266	3194	2888
Feeding (Blue)	5911	5158	6980	6124
Drinking (Blue)	60	54	60	55
Servicing (Blue)	50	50	50	50
Total blue water	6021	5262	7090	6229
Total water use (B+G)	9809	8528	10284	9117
Milk yield (kg/animal/d)	9.16	9.39	7.26	7.41
Blue WF (lit./kg milk)	658	560	976	840
Green WF (lit./kg milk)	414	348	440	390
FPCM yield (kg/animal/d)	9.25	9.56	9.95	10.25
Blue WF (lit./kg FPCM)	651	550	713	608
Green WF (lit./kg FPCM)	409	342	321	282

Ration Balancing (Indigenous Gir cow)

Feed ingredients (kg/ d)	Traditional feeding	Balanced ration	WF _{Feed} (lit./ kg feed)	
Wheat bran	1.89	1.5	436	
Cottonseed cake	3.57	1.46	982	
Jowar fodder	14.58	15.00	43	
Jowar straw	7.16	4.56	474	
Groundnut tops	-	2.00	438	
Mineral Mixture (ASMM)	-	0.102		
Total DM intake	14.27	11.60	Change	
Cost of ration (Rs./ kg milk)	23.91	17.11		
Water req. of ration (lit/ d)	8351	5770	210/	
WF _{Milk} (lit/ kg milk)	1152	796	- 31/0	

Saurashtra region of Gujarat, Kharif season, BW: 442 kg, MY: 7.25 kg/d, Fat 5.1%.

Enteric CH₄ Emission Intensity of Mixed Milk

GHG mitigation 62.7 thousand tonne $CO_2e/year$

Conclusion & Way Forward

- Ration optimization resulted in 15% reduction in water footprint and 14% reduction in enteric methane emission intensity of milk.
- Additional scope: season specific ration advisory using low water footprint feeds, value addition of crop residues, strategic feeding for improving lactation yield and use of high biomass yielding crop varieties, etc.
- Large scale adoption of ration optimization by farmers would help improve socio-economic and environmental sustainability of the dairy sector.

Thank You