

Food and Agriculture Organization of the United Nations

Accounting for livestock water productivity: How and why?

Land and Water Discussion Paper 14 PD Dr. Katrin Drastig, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)

Potsdam, Germany, 14-16 December 2022 A hybrid workshop, focused on Water use assessment of livestock production systems and supply chains

Sponsored by the OECD Co-operative Research Programme: Sustainable Agricultural and Food Systems

Leibniz Associatior Indicator: Water Productivity (WP)

- Productivity = Relation of Output to Input
- Water productivity [e.g. kg m⁻³; kcal m⁻³, € m⁻³]

$$WP = \frac{Output}{Water input}$$

Output [kg, kcal, €,....]

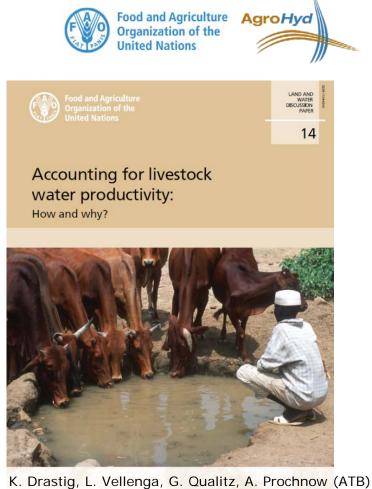
- · nutrition content per kg of product
- \cdot purchase
- Water input [m³]
 - transpiration of precipitation (stemming from: infiltrated precipitation and soil water)
 - technical water (stemming from: ground- and surface water)
 - indirect water (water in prec-chains)

Boulay et al. (2021): Building consensus on water use assessment of livestock production systems and supply chains: outcome and recommendations from the FAO LEAP Partnership. Ecological Indicators. (Mai 2021): p. 107391.

Drastig et al. (2021) Accounting for livestock water productivity: How and why?. Technical Report. FAO, Rome.

FAO (2019): LEAP: Guidelines for water use assessment of livestock production systems and supply chains. Rom, 104 S.

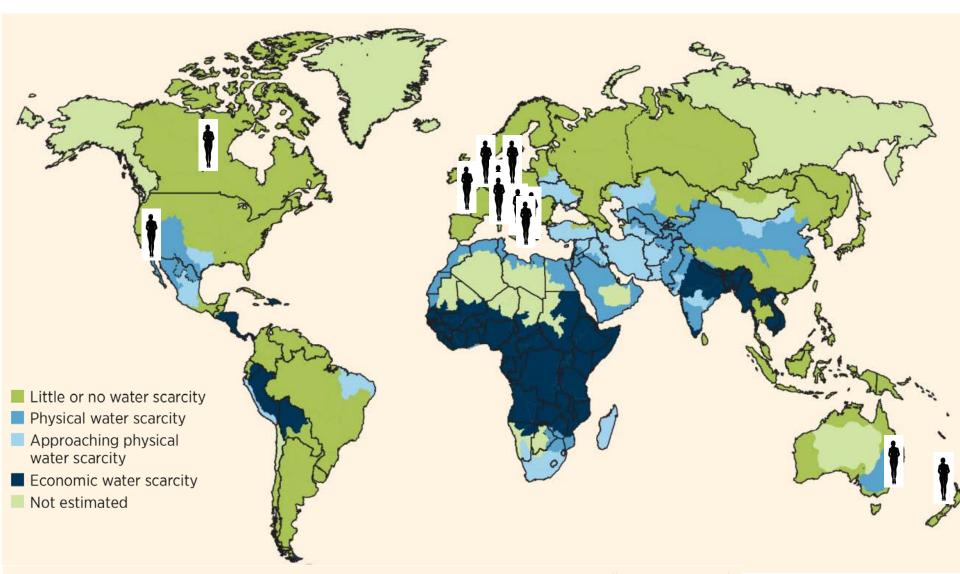
Prochnow, A., Drastig, K., Klauss, H., Berg, W., 2012. Water use indicators at farm scale: methodology and case study. Food and Energy Security. 1 (1): 29-46


- Accounting for livestock
- water productivity

• How?

Various methods and approaches were analysed

• Why?


Raising awareness Impact assessment Improvement of water productivity

- R. Singh (Massey University)
- S. Pfister (ETH-Zürich)
- A.-M. Boulay (CIRAIG)
- S. Wiedemann (Integrity Ag Services)
- A. Chapagain (Pacific Institute)
- C. De Camillis, C. Opio & A. Mottet (FAO)

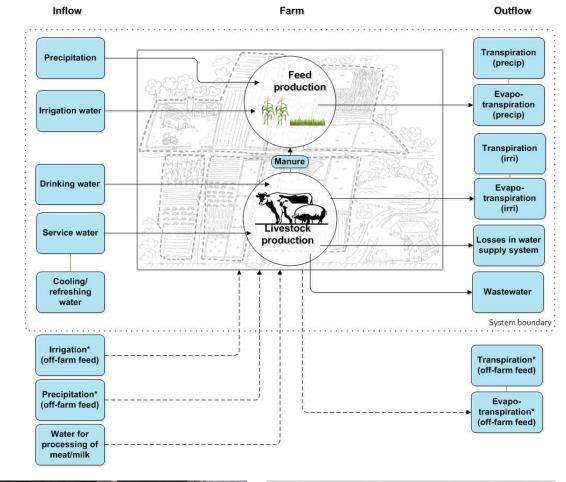
Authors

Source: Comprehensive Assessment of Water Management in Agriculture (2007, map 2.1, p. 63, © IWMI, http://www.iwmi.cgiar.org/).

Discussion paper – 50 studies

- Extensive literature search
- Additional relevant findings of research organizations, e.g. the International Center for Tropical Agriculture (CIAT), the National Institute of Agricultural Technology (INTA), Agribenchmark

50 studies

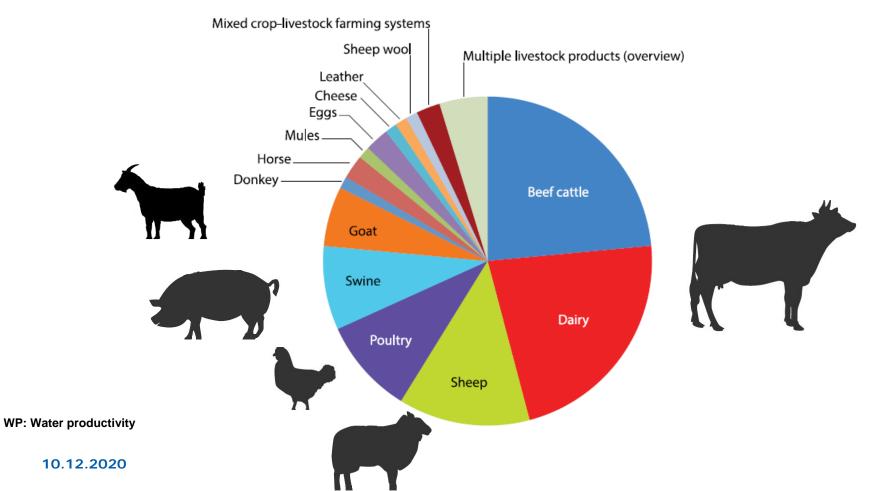


Bekele, Mengistu & Tamir (2017) Haileslassie et al. (2011a) Haileslassie et al. (2011b) Haileslassie et al. (2009) Descheemaeker, Amede & Haileslassie (2010) Ran et al. (2017) Renault & Wallender (2000) Srairi et al. (2016) Ríos et al. (2012) Quintero, W.M. (2014) Atzori et al.(2016) Beckett & Oltjen (1993) Brown, Schreier & Lavkulich (2009) Chapagain & Hoekstra (2003) Chapagain & Hoekstra (2004) Chapagain & Orr (2008) Eady, Viner & MacDonnell (2011) EBLEX (2010) Hoekstra & Chapagain (2006) Hoekstra & Chapagain (2007) Hoekstraetal. (2011) Owusu-Sekyere, Jordaan & Chouchane (2017) Palhares & Pezzopane (2015) Palhares, Morelli & Junior (2017) Peters et al. (2010) Singh et al. (2004) Sultana et al. (2015) van Breugel et al. (2010) Mekonnen & Hoekstra (2012) Zeng et al. 2012) Drastig et al. (2016) Krauß et al. (2015a) Krauß et al. (2015b) Prochnow et al. (2012) Ridoutt & Pfister (2010) Ridoutt et al. (2010) Wiedemannetal. (2016a) Wiedemann, Yan & Murphy (2016) Wiedemannetal. (2015a) Wiedemannetal. (2015b) Wiedemann, McGahan & Murphy (2012) Wiedemann, McGahan & Murphy (2017a) Wiedemann, McGahan & Murphy (2017b) Wiedemann, Yan, Henry & Murphy (2016b) Wiedemann (2014) Drastig et al. (2010) Meul, Nevens & Reheul 2009)

Discussion paper

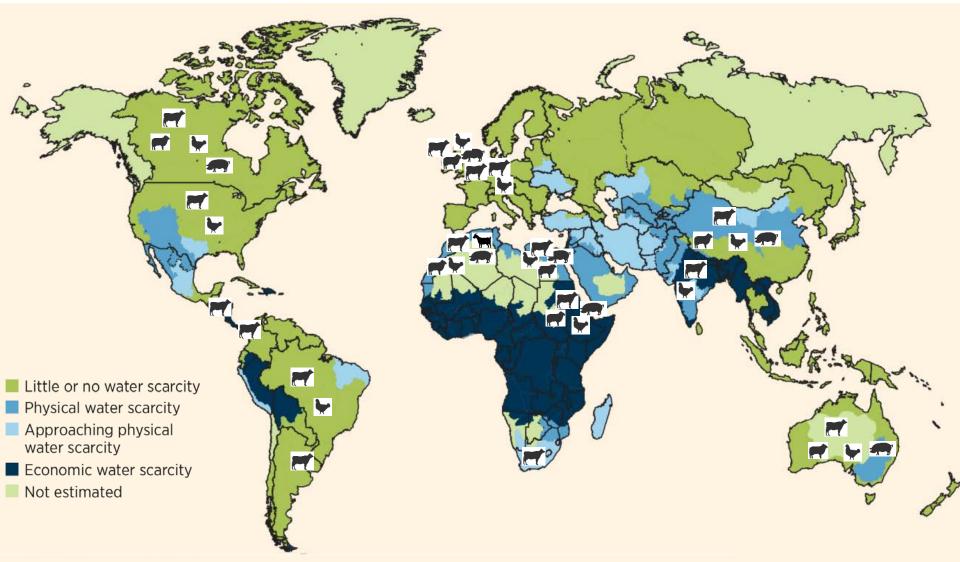
Analysis of:

- Assessment goals
- Water flows included
- Methodological approaches
- System boundaries
- Main findings in each of the studies


Results: Water flows taken into account

Study	Water stemming from precipitation		Technical water		
	Evapotranspiration	Transpiration	drinking	irrigation (withdrawal)	irrigation (consumption)
Bekele, Mengistu & Tamir (2017)	x				1
Haileslassie et al. (2011a)	x				
Haileslassie et al. (2011b)	×				
Haileslassie et al. (2009)					
Descheemaeker, Amede & Haileslassie (2010)					
Ran et al. (2017)	×				x
Renault & Wallender (2000)	x	-			x
Srairi etal. (2016)	x				x
Ríos et al. (2012)	x		()		~
Quintero, W.M. (2014)					
Atzori et al.(2016)	×	T	x		X
Beckett & Oltjen (1993)	×		×		×
Brown, Schreier & Lavkulich (2009)	/ x \		×		/ x \
Chapagain & Hoekstra (2003)	×	/	×		/ × \
Chapagain & Hoekstra (2004)	×		×		×
Chapagain & Orr (2008)	x		x		x
Eady, Viner & MacDonnell (2011)	x	1 /	x		x
EBLEX (2010)	×		x		x
Hoekstra & Chapagain (2006)	x	1 . 1	x		x
Hoekstra & Chapagain (2007)	x	+ + 1	x	-	×
Hoekstraetal. (2011)	x		x		x
Owusu-Sekyere, Jordaan & Chouchane (2017)	x		x		x
Palhares & Pezzopane (2015)	x	1 1	x		x
Palhares, Morelli & Junior (2017)	x	1	x		x
Peterset al. (2010)	x	/ /	x		x
Singh et al. (2004)	x		x		×
Sultana et al. (2015)	X X	1	×		\ × /
van Breugeletal. (2010)	X x		×		X X
Mekonnen & Hoekstra (2012)	x		× /		X X
Zeng et al. 2012)	x		×		×
Drastig et al. (2016)		$\bigcirc \downarrow$			
Krauß et al. (2015a)		A I	TX	A	
Krauß et al. (2015b)		x	×	x	
Prochnow et al. (2012)			. (x)	x	
Ridoutt & Pfister (2010)		U T			x
Ridoutt et al. (2010)			x		×
Wiedemann et al. (2016a)			×		× \
Wiedemann, Yan & Murphy (2016)			x		×
Wiedemann et al. (2015a)			x		x
Wiedemannetal. (2015b)			x		x
Wiedemann, McGahan & Murphy (2012)			x	T	x
Wiedemann, McGahan & Murphy (2017a)			x		x
Wiedemann, McGahan & Murphy (2017b)					×
Wiedemann, Yan, Henry & Murphy (2016b)			X		\sim
Wiedemann (2014)			×		
Drastig et al. (2010)			x		
Meul, Nevens & Reheul 2009)			x/		

Livestock species


Nearly half (46%) of the WP studies focused on beef cattle and dairy farms.

Sheep, poultry, swine and goats were investigated in more than 20% of the studies.

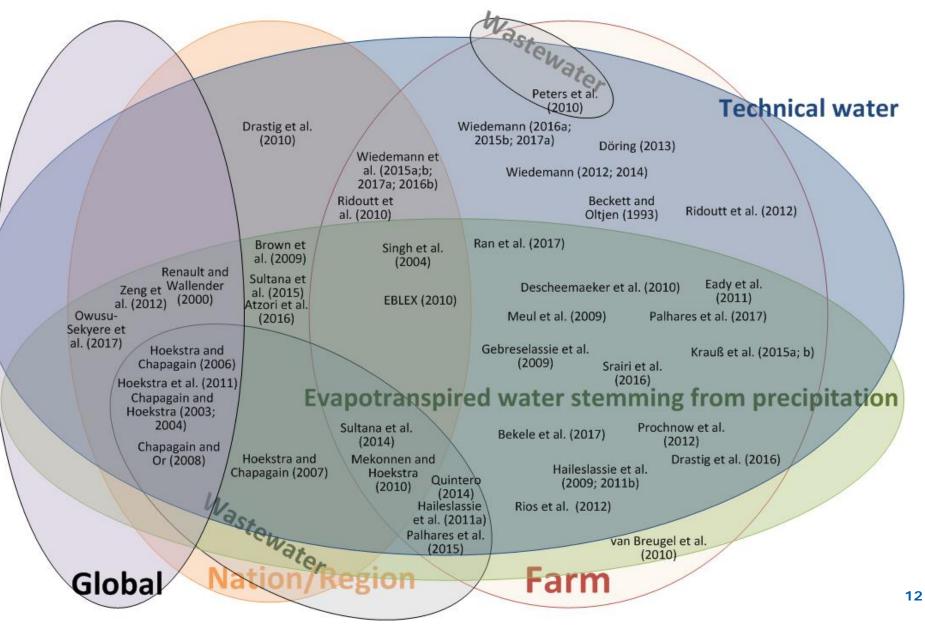
8

Countries with studies of water productivity

Source: Comprehensive Assessment of Water Management in Agriculture (2007, map 2.1, p. 63, © IWMI, http://www.iwmi.cgiar.org/).

10.12.2020

Results

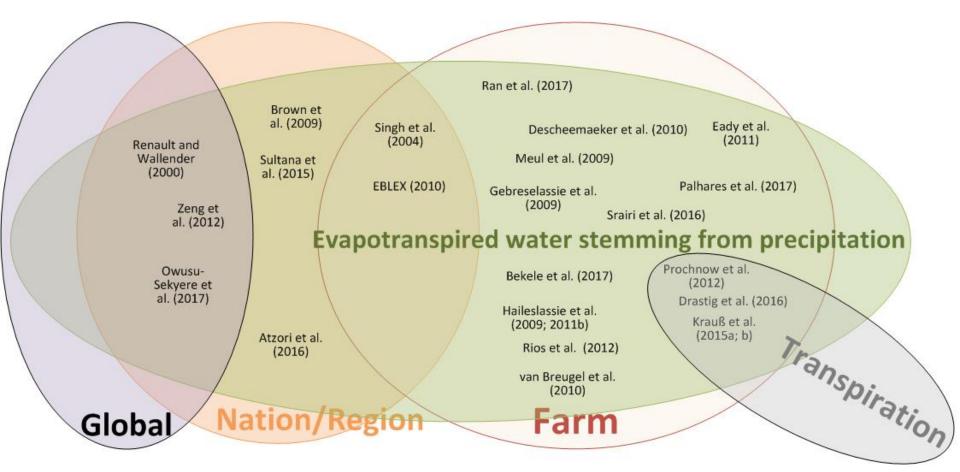

- 1. Key issue: Use of different definitions of water productivity resulted in meaningful accounting differences
- E.g. variation in the type of **output** product used (e.g. dry meat, fresh meat, protein value, calorific value, etc.)
- Inclusion or exclusion of the following water outflows as water input:
- Water flows associated with background processes
- Flows stemming from precipitation
- Unproductive evaporation
- Wastewater
- 2. Key issue: Missing uncertainty assessment

Results - Main categories

The assessment approaches fell into three main categories:

- Volumetric/virtual water footprint (WFPa), e.g. Hoekstra et al., (2011) based on the virtual water concept (Allen, 1998)
- Water scarcity footprint (WFPb) LCA-based/ISO 14046:2014
- Water productivity (WP) e.g. Rockström and Barron, (2007); Descheemaeker, Amede and Haileslassie (2010); Molden *et al.* (2010); Kebebe *et al.* (2015); Haileslassie *et al.* (2009).

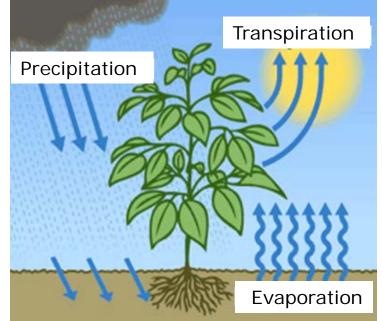
Specific Results: Methods – included Water flows (Input)



Specific results: Methods – included Water flows (Input)

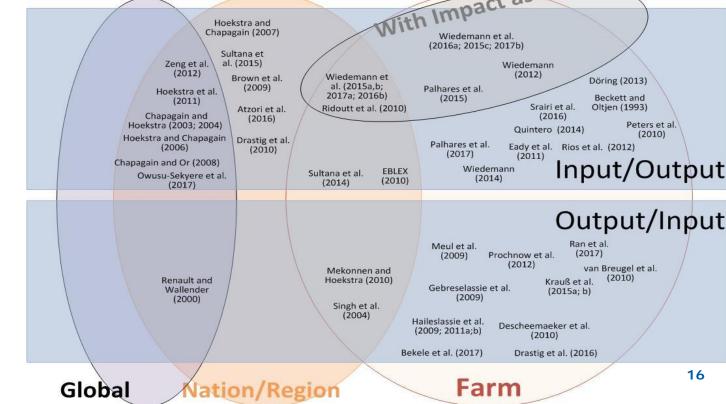
- Evapotranspiration stemming from precipitation (33 Studies; WFP_{volumetrisch})
- Only technical water (14 Studies; WFP_{scarcity})
- Waste-water (11 Studies; mainly WFP_{volumetrisch})

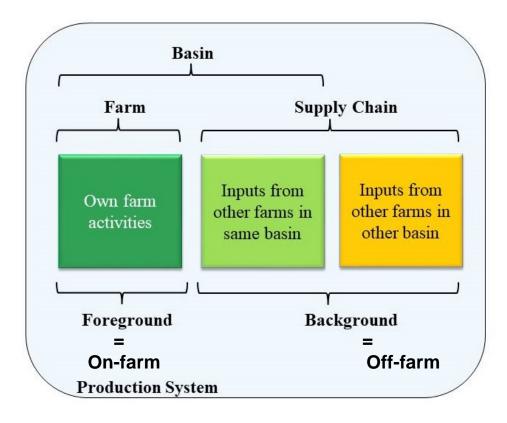
Meths – included water flows (Input)



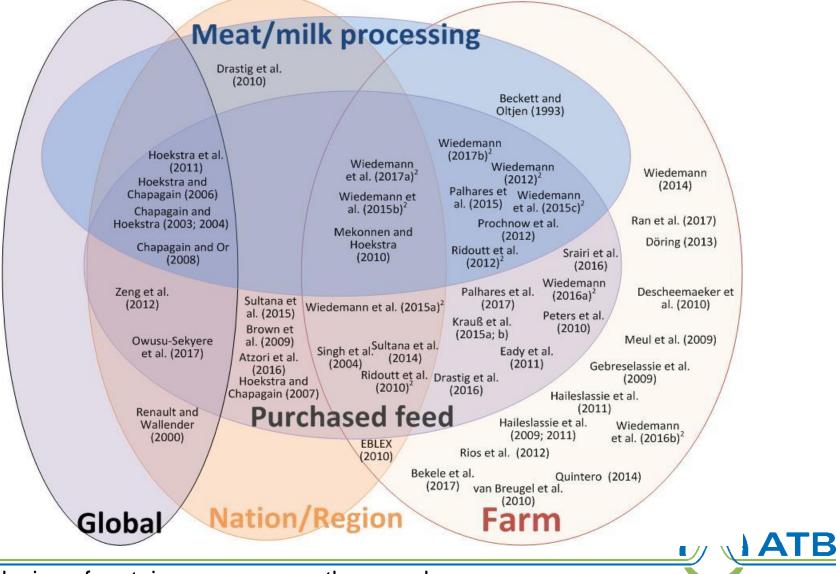
Evapotranspiration or transpiration stemming from precipitation on three scales

Included water flows (Input)


- Transpiration stemming from precipiation (4 studies; FWP)
- What is so special about transpiration?
- Only the fraction that is used for plant transpiration contributes to biomass production

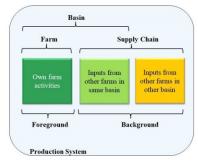

Input/Output or Output/Input

- Output over Input defined as calculation as water productivity (e.g. kg/m³), (15 Studien; WFP_{volumetric}, WFP_{scarcity})
- Input over Output defined as calculation as water footprint (e.g. m³/kg). (34 Studien; WFP_{volumetric}, WFP_{scarcity})



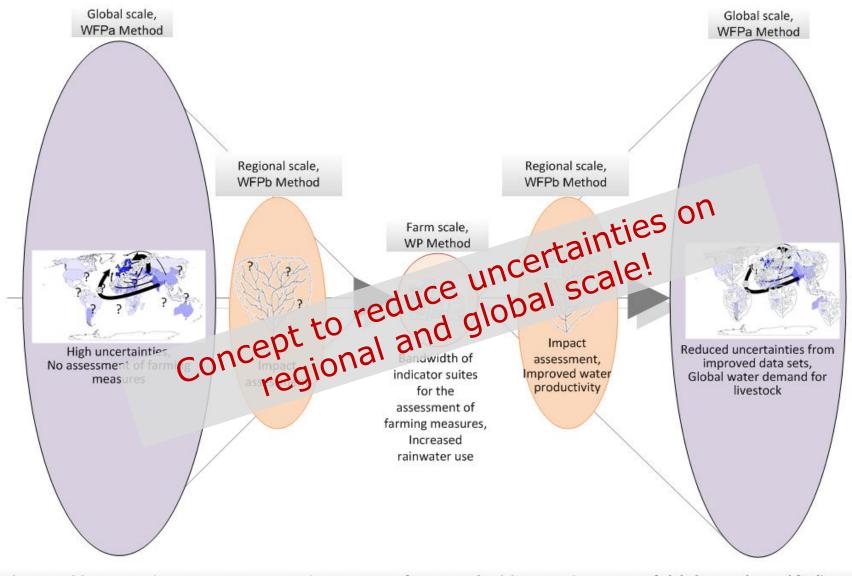
Off-farm processes

The system boundaries defined the inclusion of off-farm processes



Off-farm processes

Inclusion of certain processes on three scales


Off-farm processes

- The system boundaries defined the inclusion of offfarm processes
- In more than half of the studies, "cradle-to-farm" gate was chosen as the boundary
- 32 studies included purchased feed
- 12 studies included water demand for dairy or meat processing
- Three studies included indirect water use for electricity, fuel, and fertilizer

Developed concept improvement of water use in global livestock production

Outlook

How should the accounting for livestock water productivity be done?

- Use the method appropriate for the question you ask and compare the results with values from studies using the same definition of water productivity.
- It is important to report uncertainties, if possible, quantitatively or at least qualitatively.
- FAO LEAP Guidelines of the Water TAG propose a method for adding information on the percentage of green and blue water used, with each water productivity indicator seen as part of a suite of metrics.

TAG:Technical Advisory GroupBlue water:Fresh water stored in water bodies, such as water
in lakes, rivers and groundwaterGreen water:Fresh water that is stored as soil moisture from
infiltrated rainfall and used by vegetation

FAO. 2019. Water use in livestock production systems and supply chains – Guidelines for assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. Rome. <u>http://www.fao.org/3/ca5685en/ca5685en.pdf</u>