Modified Atmosphere and Humidity Packaging of Fresh Produce

Pramod Mahajan, Guido Rux, Oluwafemi Caleb, Manfred Linke, Martin Geyer, Astrid Pant, Sven Sängerlaub

Leibniz Institute for Agricultural Engineering (Potsdam, Germany)

Fraunhofer Institute of Process Engg. & Packaging (Freising, Germany)

pmahajan@atb-potsdam.de

10 Round Table 2016
Food Preservation and Sustainability at Home
Future Opportunities for Consumers to Reduce Food Waste

14th April 2016, Tierärztliche Hochschule, Hannover
About Leibniz-Institut für Agrartechnik Potsdam-Bornim (ATB)

- Non-university research institution, member of Leibniz Association
- Close collaboration with universities, agriculture / horticulture industry

- Total budget 17 Mio Euro (2013)
 - Core funding by Federal Government and State (50 % each)
 - Third-party funding of approx. 35 %

- > 250 staff members, interdisciplinary research teams, young researchers (50 PhD candidates)

- Excellent scientific infrastructure
 (labs, pilot plants, 50 ha experimental orchard)

- Our research is organised in 4 programs

www.atb-potsdam.de
Limitations of fresh produce (fruit and vegetables)

- After harvest, fruit & vegetables continues to live
- Changes in physiological processes after harvest
 - Respiration and transpiration
 - Produce depends on its own water and organic substrates
- Growth of spoilage microorganisms
- Natural senescence

(Caleb et al., 2013; Mahajan et al., 2014)
What is the best packaging film for a given product? e.g. grapes
Packaging industry practises: “Pack & Pray”

- Most of the packages had minimal atmosphere modification
- Not harmful, but also not beneficial, from quality/safety point of view

(Mahajan et al., 2011)
Modified Atmosphere Packaging Design

First principle mathematical equation:

\[
RR = \frac{\alpha \times y_{O_2}}{\phi + y_{O_2} \times \left(1 + \frac{y_{CO_2}}{\gamma}\right)}
\]

\[
RR = R_{\text{ref}} \times e^{-\frac{E_a}{R_e} \left(\frac{1}{T} - \frac{1}{T_{\text{ref}}}\right)}
\]

\[
P_{O_2} = P_{O_2}^* \exp\left[-\frac{E_{O_2}}{R \times T}\right]
\]

\[
P_{O_2} = \left[P_{O_2} + \pi \frac{R_H^2 \times 16.4 \times 10^{-6}}{(e + R_H)} \times N_H\right]
\]

I wish there would be a software to solve all these steps...

Integrate the models:

Optimum MAP Conditions
- O₂, CO₂, Temp

Respiration Rate
- Fruit & Veg, whole & fresh-cut

Product Volume
- Product Mass & Density

Packaging Films
- Permeability, Microperforations

Package Geometry
- Pouch, Tray, Flow-wrap

Integrate the models...
Systematic study to compile database in ready-to-use format

Database

- **Storage**
 - \(\text{Optimal atmosphere (O}_2, \text{CO}_2)\)
 - \(\text{Storage temperature}\)

- **Product**
 - \(\text{Respiration rate}\)
 - \(\text{Product density}\)

- **Package**
 - \(\text{O}_2, \text{CO}_2\) permeability
 - \(\text{Diffusion through micro-perforations}\)
 - \(\text{Package geometry and size}\)

- Mathematical algorithm to select the film, size & number of micro-perforations
- Mass balance equations to simulate package atmosphere
- Monte Carlo simulations to evaluate impact of product/package variability

(Mahajan et al., 2007)
Modified Atmosphere Packaging Design

- Strawberry, 180 grams
- Tray + Lidding film, heat sealed
- NVS Film, 30 μ thickness
- Two micro-perforations (0.25 mm φ)

(Sousa & Mahajan, 2013)
Optimum perforations for Rucola packaging

Time (d)

O2 (%)

Not optimised holes

Optimised holes

No holes
Perforations in the packaging film

- Low risk of anaerobic conditions (very low O₂)
- Reduce moisture condensation, less spoilage

High RH
Conditions favourable for microbial growth

Low RH
Leads to water loss and shrinkage
Water vapour saturation is commonly observed in the packaged fresh produce, and therefore, decay.

Plastic materials: Low permeability for water vapor results in condensation inside package.

Micro-perforated packaging films: Not complete elimination of condensation, not possible to use MAHP-technology.
Humidity Regulating Trays

ReguPack Project

Developed by...

Fraunhofer Institute of Process Engineering & Packaging
Freising, Germany
Humidity-Regulating Trays

Inner layer: water vapor permeable

Active layer: hygroscopic NaCl

Outer layer: high barrier

• 2 kinds of H-R trays: 0 wt-% concentration of NaCl (T-0)
 12 wt-% concentration of NaCl (T-12)

• 1.5 g of NaCl in T-12 tray

• Size: 129 x 129 x 75 mm

(Rux et al., 2016)
Humidity-Regulating Trays

- Water vapor absorption even without salt in the inner layer
- Water vapor absorption greatly enhanced by salt (2 times)

At 13°C and 100% RH

![Humidity-Regulating Trays](image)

Moisture sorption (g) vs. Storage time (d)

- T-0
- T-12

R² = 0.99

(Rux et al., 2016)
Humidity-Regulating Trays

- Performance evaluation: strawberries and tomatoes
- Storage in cooling room at 13 °C and 60 % RH for 7 days
- Measure the product quality at end of storage time

![Strawberry and tomato diagrams with lidding film and weight labels]
Humidity-Regulating Trays: Packaging performance

RH (%) vs. Storage time (d)

- T-0
- T-12
- Control

(Rux et al., 2016)
Humidity-Regulating Trays: Packaging performance

- Control-PP tray
- 0% NaCl tray
- 12% NaCl tray
- Control macro-perforated tray

Comparison:
- Higher water loss by H-R tray compared to control-PP tray
- Lower water loss in H-R tray compared to perforated film (Rux et al., 2016)

Legend:
- Weight loss of produce, g
- Moister absorption by tray, g
- Moisture loss over film, g

Graphical Representation:
- Bar charts showing weight, moisture absorption, and moisture loss over film for different tray conditions.
Humidity-Regulating Trays: Packaging performance

Less condensation on the lidding film on H-R tray
Humidity-Regulating Trays: Packaging performance

Control (macro-perforated) T-0 T-12

Richer color of tomatoes after storage, still too high RH
Sustainable Packaging Technology

Paper Tray
- Novel fibre-based tray
- Thermo-formable packaging material
- High barrier properties, compostable
- Antimicrobial functionalities
- Recyclability and compostability after usage

[Actipoly, CORNET project](www.cornet-actipoly.eu)

Bio-film
- Cellulose from trees (wood pulp)
- Fully compostable (home, industrial, marine)
- High water vapour transmission rate
- Suitable for modified humidity packaging
Bio-film for packaging of tomato

![Graph showing the comparison of relative humidity over time for different film types: Polypropylene film, Bio-film (NatureFlex), and Polypropylene film + holes. The graph illustrates the effectiveness of each film in maintaining a desired humidity level for tomato packaging.](image)
Conclusions:

- Integrative approach helps to design optimal packaging for fresh produce
- Integration of salt into polymer matrix provides a novel approach for regulating in-package humidity
- Biodegradable films hold potential for controlling humidity inside fresh produce packaging
Thank you for your attention...

Acknowledgements: